Constant time steady gradient NMR diffusometry using the secondary stimulated echo.

Abstract

A pulse sequence producing a second stimulated echo is suggested for the compensation of relaxation and residual dipolar interaction effects in steady gradient spin echo diffusometry. Steady field gradients of considerable strength exist in the fringe field of NMR magnets, for instance. While the absolute echo time of the second stimulated echo is kept constant throughout the experiment, the interval between the first two radiofrequency pulses is augmented leading to a modulation of the amplitude of that second stimulated echo by self-diffusion only. The unique feature of this technique is that it is of a single-scan/single-echo-signal nature. That is, no reference signals neither of the same pulse sequence nor of separate experiments are needed. The new method was tested with poly(ethylene oxide) melts and proved to provide reliable data for (time dependent) self-diffusion coefficients down to the physical limit (D approximately 10(-15)m(2)/s) when flip-flop spin diffusion starts to become effective.

Topics

0 Figures and Tables

    Download Full PDF Version (Non-Commercial Use)